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Abstract 14 

Pharmaceuticals are ubiquitous contaminants in aquatic environments with adverse biological 15 

effects linked to exposure, which has led to their classification as emerging pollutants of priority concern. 16 

Both parent compounds and metabolites, are continuously released into the aquatic environment via 17 

multiple dispersal pathways including treated and untreated wastewater effluents, aquaculture, animal 18 

husbandry and pharmaceutical industry, leading to point source acute toxicity and chronic exposure of non-19 

target organisms. Toxicity of pharmaceuticals arises from their design to specifically target biological and 20 

metabolic pathways that are in most cases evolutionary conserved. Yet, research focus is overwhelmingly 21 

directed towards freshwater systems. Here we overview recent advances in occurrence and ecotoxicology 22 

of pharmaceuticals in coastal and marine environments, and critically review sources of major therapeutic 23 

classes to transition and coastal marine environments, their pathways and ecotoxicology, highlighting 24 

reported adverse effects of exposure at different levels of biological complexity. Overall, laboratory-based 25 

studies dominate and antidepressants were the most frequently analysed therapeutic class in coastal and 26 

marine species. Regarding endpoints and major taxonomic groups, increased focus on molecular changes 27 

and invertebrates was conspicuous. In the end, we outlined key areas and opportunities where future 28 

research should be prioritized to underpin effective management options. Ultimately, understanding the 29 

effects of pharmaceuticals in the marine environment is key to support effective risk management strategies. 30 
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1. Introduction 35 

 36 

For as long as they have been produced, pharmaceutical compounds have been released in the 37 

environment. And albeit they and other personal care products are classified as contaminants of emerging 38 

concern, this term does not necessarily imply their occurrence in the environment is recent. It rather alludes 39 

to contaminants from multiple sources (domestic, industrial or agricultural) that escaped prior notice and 40 

classically were not monitored in spite of their potential to cause adverse effects to the environment; or to 41 

compounds for which only recently have environmental concerns been fully raised (Glassmeyer et al. 2007, 42 

Sauvé & Desrosiers 2014). In the end, the use of the term emerging contaminants has the intention to 43 

highlight the largely unregulated nature of the presence in the environment of substances such as 44 

pharmaceutical compounds, but also others such as cosmetics, UV blocker agents (sunscreens) or 45 

fragrances (Daughton 2016). Furthermore, the continuous and rapid technological development in highly 46 

sensitive analytical instrumentation has enabled the discovery and quantification of numerous compounds 47 

and substances in the aquatic environment, and from complex matrices, that previously went undetected 48 

(Pérez & Barceló 2007, Sanderson & Thomsen 2009, Klosterhaus et al. 2013). 49 

Pharmaceuticals have come in to particular scrutiny regarding their occurrence and effects on 50 

aquatic environments due to a few key features. Firstly, both human and veterinary pharmaceutical 51 

compounds are continuously released to the environment worldwide, resulting in their ubiquitous and 52 

persistent presence. Moreover, their concentrations in aquatic ecosystems are projected to continue to rise, 53 

with mounting environmental concerns, due to an expected increase in both the access and the widespread 54 

use of medication by a growing global population (Kuster & Adler 2014). Additionally, unlike several 55 

chemical contaminants, pharmaceutical compounds are biologically active and target particular metabolic 56 

pathways that in many cases are evolutionary conserved (Gunnarsson et al. 2008, Furuhagen et al. 2014), 57 

eliciting effects at very low environmental concentrations (e.g. ng/L) and shown to specifically affect 58 

multiple algae and animal functions (e.g. Franzellitti et al. 2013, Aguirre-Martínez et al. 2015, Minguez et 59 

al. 2016). However, it is important to notice that the term pharmaceuticals does not refer to a specific or 60 

unambiguous class of molecules sharing an a priori defined set of chemical, physical or biological 61 

similarities, but to a varied group of therapeutic compounds used for human or veterinary treatment 62 

encompassing, a wide range of kinetics, metabolism, modes of action (MOA), and ultimately an array of 63 

potential underlying effects to the environment (Taylor & Senac 2014). 64 

In this context, over the last couple of decades growing attention has been given to monitoring and 65 

evaluating the presence and the ecotoxicology of pharmaceutical compounds in the aquatic environment 66 

(Daughton 2016). Yet, in comparison to freshwater systems, where studies on the occurrence and potential 67 

effects of pharmaceuticals are manifold, transition and coastal marine environments have been 68 

comparatively overlooked or poorly investigated. In part, this is likely due to the assumption that dispersion 69 

and dilution processes, including from freshwater sources to estuarine and coastal environments, would be 70 

suffice to lessen or cancel any potential effects. Only recently has this trend begun to be reversed, with 71 

research gradually focusing towards coastal areas and showcasing that pharmaceuticals are present 72 



throughout transition and marine environments at levels potentially or effectively adverse to different levels 73 

of biological complexity (e.g. Fatta-Kassinos et al. 2011, Klosterhaus et al. 2013, Gaw et al. 2014, Aminot 74 

et al. 2016, Arpin-Pont et al. 2016, Du et al. 2016, Fabbri & Franzellitti 2016). Moreover, it is important to 75 

highlight that presumed impacts on transition and coastal environments are expected to continue to increase 76 

allied to population growth and coastal settlement as well from accessory human activities such as 77 

aquaculture (Burridge et al. 2010, Gaw et al. 2014, Tornero & Hanke 2016). Overall, the increase in 78 

research and literature since 2014 regarding the occurrence, fate and ecotoxicology of pharmaceuticals in 79 

coastal and marine environments may, at least in part, be attributed to a review by Gaw et al. (2014), and 80 

the call for research prioritization. At that time, Gaw et al. (2014) found 49 studies from the year 2000 81 

onwards reporting concentrations of pharmaceuticals in marine and coastal environments. A number that 82 

has since raised considerably, and we were now able to compile information from 124 studies (since the 83 

year 2000) focusing on the occurrence and effects of pharmaceuticals in transition and coastal marine 84 

environments [Web of Science search in February 2017 with the terms: Marine AND pharmaceutical AND 85 

(occurrence OR effect* OR toxicity)]. 86 

In the present chapter, we aim to provide a brief overview of the most recent advances in the 87 

literature regarding the occurrence and ecotoxicology of pharmaceuticals in coastal and marine 88 

environments. We critically assess the state of the art and provide an integrative analysis focusing on the 89 

sources of major therapeutic classes of pharmaceuticals to transition and coastal marine environments, their 90 

pathways and ecotoxicology to different levels of biological complexity, highlighting reported adverse 91 

effects of pharmaceuticals exposure in coastal and marine organisms. In the interest of a focused approach, 92 

the scope of the current chapter has been restricted to major therapeutic pharmaceutical compounds, 93 

excluding natural and synthesized hormones. Overall, we will prioritize in situ evaluations of effects of 94 

environmentally relevant concentrations; and aim in the end to highlight knowledge gaps and present-day 95 

challenges, and provide an outline of key areas and opportunities where future research should be prioritized 96 

to underpin the delineation of effective management options. Ultimately, understanding the effects of 97 

pharmaceuticals in the marine environment and unraveling their ecotoxicology, MOA, and 98 

bioaccumulation rates, together with research on their occurrence and fate, is key to safeguard potential 99 

threats to environmental and human health, and support effective risk management strategies. 100 

 101 

2. Sources and occurrence of pharmaceuticals in coastal and marine 102 

environments 103 

 104 

Tackling what is still a shortage of field data, and developing our understanding on the occurrence 105 

of pharmaceutical contaminants in coastal environments, their spatial and temporal patterns, as well as their 106 

impacts on the marine biota is paramount. In this section, we outline the major sources of pharmaceutical 107 

contaminants to marine environments as well as their contamination pathways, highlighting ranges of 108 

concentrations found, and briefly refer the physical and chemical processes that may influence the 109 

environmental concentrations of these contaminants in both water and sediments. 110 



Sources and pathways of pharmaceutical contaminants to coastal and marine environments are 111 

manifold (Kummerer 2009c, Gaw et al. 2014). Yet, estuarine and coastal areas receive a complex mixture 112 

of pharmaceutical contaminants that originate from a set of overarching key origins, namely: i) human 113 

household use; ii) hospital use; iii) veterinary applications, via aquaculture or from the terrestrial 114 

environment, including livestock production or household pets care; iv) and industrial and commercial 115 

activities linked to the production of pharmaceuticals (Figure 1). All these produce large amounts of waste 116 

that via a multitude of entwined pathways result in the presence of pharmaceutical compounds, their 117 

metabolites and transformation by-products directly or via diffuse routes in transition and coastal marine 118 

environments and organisms. Assumptions that pharmaceuticals in marine environments would be 119 

negligible due to hydrodynamics or dilution processes in coastal and marine environments are by large 120 

currently refuted. In fact, pharmaceutical contaminants have been detected in marine environments at 121 

distances that exceed tens and even hundreds of kilometers from what would be their anticipated sources 122 

(e.g. WWTP marine outfalls, coastal areas) (Wille et al. 2010, Zhang et al. 2013, Alygizakis et al. 2016). 123 

And even when contaminants are not found in water or sediments, or detected only sporadically, 124 

pharmaceuticals are still detected in marine organisms such as bivalves and fish, showcasing their potential 125 

for bioconcentration (Wille et al. 2011, Maruya et al. 2012, Klosterhaus et al. 2013). 126 

The major route of entry for pharmaceuticals and their by-products in natural aquatic environments 127 

are point source wastewater discharges of treated [i.e. outflow of waste water treatment plants (WWTP) 128 

and septic tanks] and untreated sewage (Glassmeyer et al. 2007, Fatta-Kassinos et al. 2011). Estuarine and 129 

coastal marine environments, particularly those near urban clusters, receive large volumes of these effluent 130 

discharges both directly via coastal or offshore underwater outfalls (e.g. Togola & Budzinski 2008, 131 

Alygizakis et al. 2016), and indirectly via loadings from streams and rivers where wastewater discharges 132 

have taken place (Xu et al. 2013, Cantwell et al. 2016). For instance, the annual loads of pharmaceuticals 133 

flushed out to sea from the Yangtze estuary are estimated to surpass 150 metric tons, as a result of the 134 

discharge of c. 50 x 106 m3 of sewage (Qi et al. 2014). In another study in South-west France, an assessment 135 

of 53 compounds produced an estimated influx of c. 10 kg per day of pharmaceuticals to the Garonne 136 

estuary (Aminot et al. 2016). It is important to highlight that even in peak conditions, treatment plants are 137 

unable to remove all pharmaceutical contaminants from wastewaters, and that performance efficiency and 138 

WWTP removal rates of pharmaceuticals vary significantly from 100 % to <1 %, depending on the type of 139 

treatment, operating conditions, chemical loads, and the specific physico-chemical properties of the 140 

different pharmaceutical compounds (Kim et al. 2007, Gros et al. 2010, Luo et al. 2014, Silva et al. 2014). 141 

As a result, over the years different human and veterinary pharmaceuticals have been found in coastal and 142 

marine waters over a wide range of concentrations, from e.g. 0.01 ng/L (e.g. Roxithromycin - antibiotic; 143 

Yan et al. 2013) to 6800 ng/L (e.g. Norfloxacin - antibiotic; Zou et al. 2011) and even above 200000 ng/L 144 

in areas closely affected by WWTP effluents (e.g. Paracetamol - analgesic; Togola & Budzinski 2008); as 145 

well as in sediments (e.g. from 0.01 to c. 17 ng/g dry weight Metoprolol - β-blocker; Cantwell et al. 2016) 146 

(see also Gaw et al. 2014, Arpin-Pont et al. 2016, Fabbri & Franzellitti 2016). It is worth highlighting that 147 

the contamination and persistence of pharmaceuticals in some transition and coastal environments such as 148 

bays, inlets, estuaries and coastal lagoons where water residency and flushing times are reduced, or with 149 

periodic connections to the sea, may be of added concern. Many of these coastal areas are favored human 150 



settlement or seasonal holiday hubs, and in addition to direct sewage discharges and other local loadings 151 

(e.g. river input, groundwater contamination) there is an increased potential risk hazard associated to the 152 

confined nature and the distinctive physico-chemical properties of these systems, where dilution and 153 

dispersion of contaminants is likely reduced and changes in sorption kinetics will affect the accumulation 154 

of pharmaceuticals over time (Dougherty et al. 2010, Liu et al. 2013, Moreno-González et al. 2015, Aminot 155 

et al. 2016). 156 

Other sea based human activities such as shipping, particularly cruise and large passenger ships 157 

may have a significant impact in specific coastal and marine areas as a result of wastewater discharges 158 

(Alygizakis et al. 2016, Westhof et al. 2016). Over 20 million passengers board cruise ships every year 159 

(Cruise Line International Association Industry Outlook), with individual liners that hold passenger and 160 

crew numbers above those of small townships regularly visiting highly sought confined or sensitive areas, 161 

and though wastewater discharges are regulated (Annex IV of the MARPOL convention on pollution 162 

prevention), treatment performance still lacks effective administrative regulation or monitoring, so the 163 

potential for contamination is substantial. For instance, Westhof et al. (2016) estimated annual loads of 164 

Ibuprofen exceed 3.3 Kg for a ship with 4000 persons on board.  165 

Wastewaters from healthcare and pharmaceutical production facilities are other key sources of 166 

pharmaceutical compounds to estuarine and coastal marine environments (Figure 1). By their own nature, 167 

hospital activities generate a sizable quantity of contaminated effluents. These are dependent on numerous 168 

factors which include, but are not limited to, bed density, number of patients or medical specialties, with 169 

several studies characterizing pharmaceutical residues in hospital wastewaters in different regions 170 

worldwide (e.g. Santos et al. 2013, Herrmann et al. 2015, Oliveira et al. 2015, Azuma et al. 2016). 171 

Compiling information on hospital and healthcare facility effluents, Oliveira et al. (2017) showcased that 172 

many pharmaceuticals were present at concentrations below 10 µg/L, though for several of the most 173 

common active ingredients values were significantly higher (e.g. Paracetamol 1368 µg/L, Ciprofloxacin 174 

125 µg/L). Overall, though healthcare facilities have been pointed out as key contributors, everyday 175 

household discharges are still generally acknowledged as the main contributor of human use 176 

pharmaceuticals to the environment (see Kummerer 2009c, Le Corre et al. 2012, Herrmann et al. 2015). In 177 

part, this is due to the sheer number of users and the amount of pharmaceutical consumption that takes 178 

place in domestic context, with many outpatients also continuing treatment or receiving palliative care 179 

outside hospital facilities. 180 

Regarding drug manufacturing, a number of studies have also reported environmental 181 

contamination as well as the damaging effects of exposure to effluents from pharmaceutical production 182 

sites, with several evidences of high concentrations in effluents, with contamination values reaching tens 183 

of mg/L (Fick et al. 2009, Cardoso et al. 2014, Larsson 2014). Remarkably, and for purposes of management 184 

and supervision, it is possible to reconstruct exposure pathways and disentangle factory source 185 

contamination from human use by evaluating the ratio of pharmaceutical precursor and of its human 186 

metabolites (e.g. Prasse et al. 2010). Overall, drug factory discharges, environmental risk and contamination 187 

patterns are not specifically linked to use patterns or seasonality, and will mainly affect coastal and marine 188 

environments via their localization, or via loading of rivers and streams with subsequent contamination 189 



downstream. Though pharmaceutical industries are mostly located in south east Asia (e.g. Bangladesh, 190 

China, India and Pakistan), production sites elsewhere (e.g. Europe, US) are also identified as significant 191 

contamination sources (see Cardoso et al. 2014, Larsson 2014, Rehman et al. 2015). 192 

Veterinary applications of pharmaceuticals in both aquaculture and land based animal husbandry 193 

or livestock productions are also known contributors of pharmaceuticals to natural environments (Figure 194 

1). In response to the rising demand in seafood products worldwide, aquaculture has been seeing a 195 

continued boost in both the number of farms as well as production yield, and this is in part associated to the 196 

availability of an array of pharmaceutical compounds that enhance productivity (Sapkota et al. 2008, 197 

Tornero & Hanke 2016). The range of veterinary pharmaceuticals accessible to fish farmers include 198 

antibiotics, analgesics and antiparasitics, among others, some of them of generic human use, with many 199 

compounds applied prophylactically (Cabello 2006, Burridge et al. 2010, Tornero & Hanke 2016). Thus, 200 

any sea (coastal or estuarine) based aquaculture activities are direct entry points of pharmaceuticals to the 201 

marine environment. By large, pharmaceuticals are incorporated into feed, though other routes such as 202 

dilution and immersion in baths are available. In any case, these pharmaceutical compounds, as well as 203 

their excreted metabolites and transformation products will fuel environmental contamination and elicit 204 

impacts on non-target organisms (see Sapkota et al. 2008, Burridge et al. 2010, Chen et al. 2015). Other 205 

key pathways for pharmaceuticals to enter estuarine and coastal environments are wastewater discharges 206 

from land based aquaculture activities (Le & Munekage 2004, Zou et al. 2011). Though best practices vary 207 

worldwide, pond or tank based aquaculture of multiples species of crustaceans and fish is extensive 208 

throughout estuarine and coastal environments, with discharges made directly to these areas. Leakage from 209 

ponds is also an acknowledged pathway for veterinary pharmaceuticals to reach estuarine and coastal 210 

waters. Over the years the range of concentrations in wastewater discharges or water and sediments 211 

surrounding aquaculture activities has been found to vary widely from a few ng/l to 2.5 mg/L (Le & 212 

Munekage 2004, Chen et al. 2015, Kim et al. 2017). In some cases, the effect of released pharmaceutical 213 

loads may be aggravated by a combination of low flow conditions and the local abundance of juveniles of 214 

many species, as aquaculture farms are established in areas (e.g. estuarine habitats, mangroves) renowned 215 

to have a key nursery role (Beck et al. 2001) where potential effects on juvenile biota may be subsequently 216 

exported to adult populations (Rochette et al. 2010, Vasconcelos et al. 2011, Fonseca et al. 2015). 217 

Discharges of both treated and untreated wastewaters from land based agricultural and livestock 218 

productions may ultimately also contribute to the presence of pharmaceuticals in estuaries and coastal 219 

environments (e.g. Lim et al. 2013, Awad et al. 2014, Paíga et al. 2016) (Figure 1). Furthermore, fecal 220 

excretion of metabolites over pastoral lands can contaminate the groundwater via leaching or run-off, as 221 

can the use of waste products as fertilizers (e.g. manure). Overall, the presence of pharmaceuticals in 222 

groundwater can originate from many sources, including sewage contamination (e.g. via septic tanks, or 223 

sewer leakage), contaminated leachate from landfill (e.g. animal carcasses, pharmaceutical waste products), 224 

use of contaminated sludge as fertilizer, as well as by the use of grey waters for irrigation (see review by 225 

Sui et al. 2015). The latter can all be relevant sources of pharmaceutical contamination to coastal marine 226 

environments, due to discharge and connectivity between groundwater and coastal systems (Dougherty et 227 

al. 2010, Sui et al. 2015) (Figure 1). Overall, due to the added risk of contamination to public drinking 228 

water, evaluating pathways of groundwater contamination is also paramount (e.g. Fick et al. 2009).  229 



Upon pharmaceutical intake, significant fractions of parent compound are excreted unprocessed 230 

as well as in the form of metabolites and transformation by products. Irrespective of their sources, the fate 231 

and persistence of pharmaceuticals in coastal environments, as well as their subsequent potential to affect 232 

biota or bioconcentrate, are linked to key physico-chemical processes. Primarily, transport, biodegradation, 233 

transformation and sequestration (Figure 1). Overall, pathways and routes of exposure rely on both 234 

dissolved and particle transport (upon sorption to particulate matter, or sediments), with the fate of 235 

individual pharmaceuticals influenced by environmental conditions (e.g. salinity, suspended particulate 236 

matter, hydrodynamics, water column mixing, pH, turbidity or light penetration) as well as by their own 237 

physical and chemical properties (Glassmeyer et al. 2007). Thus, information collated for degradation or 238 

sorption of pharmaceuticals in freshwater environments may not be directly applicable in estuarine and 239 

marine contexts (see for instance Fenet et al. 2014, Gaw et al. 2014, Zhao et al. 2015, Fabbri & Franzellitti 240 

2016). Nonetheless, hydrolysis, photolysis, biodegradation and adsorption are recognized as the most likely 241 

to alter pharmaceutical compounds. Understanding the complex interactions among sorption kinetics, 242 

potential resuspension and transport is crucial. All play a key role in the fate of pharmaceuticals along the 243 

interface between estuarine and coastal marine environments, and will determine the persistence of these 244 

compounds in the environment, their availability for bioaccumulation and exchange between environments 245 

(Kummerer 2009c, Liu et al. 2013). For instance, sorption to colloids can represent a sink for 246 

pharmaceuticals, increasing persistence but decreasing bioavailability (pending resuspension), whilst pH 247 

and salinity variations can also affect the ionization and solubility of different compounds. In transition 248 

areas, changing environmental conditions, as well as major seasonal variations in both environmental 249 

conditions and contaminant inputs (e.g. in recreational and holiday areas) may have significant 250 

repercussions in the occurrence of pharmaceuticals, bioavailability and transfer to the marine environment 251 

(Liu et al. 2013, McEneff et al. 2014, Moreno-González et al. 2015, Zhao et al. 2015). 252 

 253 

3. Ecotoxicological effects of pharmaceutical exposure in coastal and marine 254 
organisms  255 

 256 

Pharmaceuticals are designed to elicit biological effects at low doses, targeting specific metabolic 257 

and physiological pathways to achieve the desired therapeutic effects in human and veterinary medicine. 258 

In addition to high specificity at low concentrations, the evolutionary conservation of most molecular 259 

targets across taxa implies that environmental concentrations of pharmaceuticals have the potential to 260 

chronically impact exposed non-target aquatic organisms, with several adverse effects of pharmaceutical 261 

exposure reported in organisms at different levels of biological organization (e.g. Huerta et al. 2012). 262 

The majority of ecotoxicological data on pharmaceutical compounds pertains to the freshwater 263 

environment (reviews by Crane et al. 2006, Fent et al. 2006), yet scientific contributions on occurrence and 264 

effects of pharmaceuticals on coastal and marine biota are increasing. For the current chapter, we found 265 

124 studies focusing on ecotoxicology of pharmaceuticals in coastal and marine biota, as well as on 266 

bioaccumulation in wild coastal and marine organisms. Six major therapeutic classes, namely analgesic 267 

non-steroid anti-inflammatory drugs (NSAIDs), antidepressants, antibiotics, anticonvulsants, 268 



antihypertensives and lipid regulators, clearly stood out and encompassed c. 91 % of all studies. This is 269 

likely due to their frequent detection in the marine environment as well as to their higher sales and 270 

consumption. Nonetheless, we cannot exclude a bias towards better-known or more-established compounds 271 

and MOA, with researchers favoring the possibility of data comparison with available information.  272 

Concerning major taxonomic groups, mollusks are the most frequent group of organisms in 273 

pharmaceutical accumulation and toxicity studies (69 studies), followed by crustaceans and fish (32 and 27 274 

studies, respectively) (Figure 2). Research with marine microorganisms, specifically microalgae and 275 

bacteria, were predominantly standard toxicity tests (11 and 6 studies, respectively). Overall, research on 276 

the effects of the major therapeutic classes is well distributed among taxonomic groups. Though there is 277 

less data available for antihypertensives and lipid regulators on mollusks, in comparison to other therapeutic 278 

classes (Figure 2). In terms of study type, most of the data relate to molecular changes (71 studies), which 279 

include gene and protein expression as well as other biochemical changes (e.g. biomarkers of oxidative 280 

stress and xenobiotics biotransformation) (Figure 2). Molecular endpoints are ubiquitous to all therapeutic 281 

classes and are the primary endpoint in analgesic and NSAIDs toxicity studies, whereas behavior endpoints 282 

are particularly associated with antidepressant exposures. Effects on development, mortality and 283 

reproduction of marine biota are also important endpoints in pharmaceutical toxicity assessments (27, 21 284 

and 17 studies, respectively). 22 studies report the accumulation of pharmaceuticals in finfish, crustaceans 285 

and shellfish tissues (Figure 2). This is a noteworthy increase from the 14 studies identified in Gaw et al. 286 

(2014). Overall, antibiotics are the main therapeutic class investigated in bioaccumulation studies of marine 287 

and coastal organisms, with many studies linked to major aquaculture production. For instance, quinilones, 288 

sulfonamides and macrolides were detected in wild mollusk species collected along the coast of the Bohai 289 

Sea in China, with highest concentrations ranging from 36 to 1575 µg/kg (Li et al. 2012). Evaluating 290 

bioaccumulation and biomagnification of several antibiotic agents in a marine trophic web in Laizhou Bay 291 

(China), trimethoprim, nine sulfonamide, five fluoroquinolone and four macrolide antibiotics were all 292 

detected in marine invertebrates and fish (Liu et al. 2017). Additionally, sulfonamides and trimethoprim 293 

were found to biomagnify along the food web, whilst fluoroquinolones and macrolides were biodiluted. 294 

Nonetheless, local seafood consumption was considered unlikely to pose a major human health risk, 295 

regarding antibiotic concentrations. Other studies have focused on field monitoring of several 296 

pharmaceutical compounds in coastal waters via long term caging experiences with marine bivalves. Wille 297 

et al. (2011) detected five pharmaceuticals in caged mussels along the Belgium coast, namely salicylic acid, 298 

paracetamol, propranolol, ofloxacin and carbamazepine (highest concentrations ranging from 11 to 490 299 

ng/g dw). McEneff et al. (2014) quantified carbamazepine, mefenamic acid and trimethoprim (peak 300 

concentrations of 7.28 to 9.22 ng/g dw) in Mytilus spp. following a one year experiment in the Irish coast. 301 

Yet, knowledge on fate, biotransformation and bioaccumulation of pharmaceutical compounds in the 302 

marine environment is still insufficient, as evidenced by the lack of concordance between field-derived 303 

bioaccumulation factors for ribbed horse mussels (Geukensia demissa) and model-predicted 304 

bioconcentration factors (Klosterhaus et al. 2013), as well as the lack of correlations between accumulation 305 

and observed molecular effects of pharmaceuticals (Mezzelani et al. 2016b). 306 

Analgesics and NSAIDs reduce pain and inflammation and are amongst the highest consumed 307 

pharmaceuticals worldwide (Fent et al. 2006). Representative compounds include acetaminophen, 308 



diclofenac, ibuprofen, ketoprofen and indomethacin. Biological targets are cyclooxygenases isoforms 309 

(Cox1 and Cox2) and these drugs act by non-specific inhibition of the synthesis of various prostaglandins 310 

from arachidonic acid (Vane & Botting 1998). Besides being involved in inflammation and pain responses, 311 

prostaglandins also play important roles in various physiological functions, including reproduction 312 

processes, reducing hypertension, fatty acids metabolism and synthesis of the protective gastric mucosa 313 

(Jones 1972). In fish and marine invertebrates, prostaglandins have been related with reproduction, ion 314 

regulation and immune responses (Sorbera et al. 2001, Rowley et al. 2005). Accordingly, the marine clam, 315 

Ruditapes philippinarum, exhibited significant immunological alterations following a 7 days exposure to 316 

ibuprofen particularly at the highest concentrations tested (500 and 1000 ug/L), (Matozzo et al. 2012). In 317 

the crustacean Carcinus maenas, osmoregulatory capacity was impaired with environmentally relevant 318 

concentrations of diclofenac over 7 days (10 ng/L and 100 ng/L), although no stress-related effects were 319 

observed in these individuals (Eades & Waring 2010). The potential of NSAIDs for endocrine disruption 320 

has been suggested in mussels Mytilus galloprovincialis exposed to 250 ng/L of ibuprofen or diclofenac 321 

for two weeks, with males and females presenting elevated levels of gonad vitellogenin-like proteins 322 

(Gonzalez-Rey & Bebianno 2012, 2014). However, a shorter time frame study with diclofenac (1 to 1000 323 

ug/L, 96h) and bivalves Mytilus spp. did not show differences in the expression of these vitellogenin-like 324 

proteins (Schmidt et al. 2011). Akin to endocrine disruption, variable neurotoxic responses have been 325 

reported in mussels in response to analgesics and NSAIDs, namely via tissue specific inhibition and 326 

increased activity of acetylcholinesterase (AChE) (e.g. Milan et al. 2013, Mezzelani et al. 2016a, 2016b). 327 

Multibiomaker approaches highlighted changes in immunological responses, lipid metabolism and DNA 328 

integrity in M. galloprovincialis exposed separately to various analgesics and NSAIDs (acetaminophen, 329 

diclofenac, ibuprofen, ketoprofen or nimesulide) at 25 µg/L and 0.5 µg/L concentrations for 14 days 330 

(Mezzelani et al. 2016a, 2016b). Subsequent gene transcription analysis, via DNA microarrays, 331 

corroborated biomarker responses, highlighting the similarities on proposed MOA of NSAIDs between 332 

bivalves and vertebrate species (Mezzelani et al. 2016b). Albeit, the lack of a significant change in oxidative 333 

stress biomarkers (catalase, glutathione peroxidase and glutathione reductase activities, total glutathione, 334 

total oxyradical scavenging capacity) or recovery of the antioxidant system indicate that prooxidant 335 

response is not a key target in the pharmacology of these compounds (Gonzalez-Rey & Bebianno 2014, 336 

Mezzelani et al. 2016a, 2016b). 337 

To our knowledge, effects of analgesics and NSAIDs in coastal and marine fish species have only 338 

been evaluated in vitro, and to test their effects on the activities of several enzymes related to xenobiotic 339 

and steroid metabolism. Ribalta and Solé (2014) reported that diclofenac significantly interfered in the 340 

CYP1A and CYP3A systems of Mediterranean fishes, particularly in the middle slope gadiform 341 

Trachyrincus scabrous. Ibuprofen exposure (100µM concentration) also inhibited the activity of the 342 

CYP3A4 enzyme, benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) in the liver 343 

microsomal fraction of Solea solea, whilst acetaminophen had no effects on measured enzyme activities 344 

(Crespo & Solé 2016). 345 

Antidepressants are neuroactive drugs for the treatment of depression and related psychiatric 346 

disorders (e.g. anxiety, obsessive-compulsive disorder, post-traumatic stress disorder). Selective serotonin 347 

reuptake inhibitors (SSRIs, such as fluoxetine, sertraline, citalopram) and serotonin and norepinephrine 348 



reuptake inhibitors (SNRIs, such as venlafaxine) are some of the most prescribed antidepressants. Their 349 

highly specific MOA is based on the modulation of neurotransmission in the human brain, by targeting and 350 

blocking serotonin and norepinephrine reuptake proteins which leads to increased levels of these 351 

neurotransmitters in the synaptic cleft (Hiemke & Härtter 2000). Serotonin is also present in lower 352 

vertebrates and invertebrates, and as in humans, this biogenic monoamine appears to be involved in various 353 

physiological functions and behaviors interacting with reproduction and neuroendocrine processes (e.g. 354 

Winberg & Nilsson 1993, Winberg et al. 1997, Fong 1998). A review on the effects of antidepressant 355 

exposure on mollusks and crustaceans outlined impacts on metabolism, growth, reproduction, feeding, 356 

locomotion and behavior, yet the bulk of information was related to freshwater invertebrates (Fong & Ford 357 

2014). Noteworthy, changes to spawning and larval release in bivalves as well as impaired locomotion and 358 

fecundity in snails occurred at environmentally relevant concentrations of antidepressants; although the 359 

occurrence of non-monotonic dose response curves were also reported with significant biological effects at 360 

lower but not at higher concentrations (Fong & Ford 2014). Considering toxicity to marine invertebrates, 361 

altered cognitive capacities (learning and memory retention) and less efficient cryptic behaviors were 362 

observed in cuttlefish Sepia officinalis following fluoxetine exposure at hatchling stages (1ng/L to 100ng/L) 363 

(Di Poi et al. 2013, 2014). Fluoxetine at concentrations ranging from 43 µg/L to 4.34 mg/L, also induced 364 

foot detachment from the substrate in five species of marine snails from different habitats (Fong & Molnar 365 

2013). This potentially lethal outcome was also observed in two marine snail species exposed to 366 

venlafaxine, albeit different locomotion behaviors at the onset of foot detachment suggest that venlafaxine 367 

and fluoxetine have different physiological mechanisms of action (Fong et al. 2015). In another study, long-368 

term exposure to low concentrations of fluoxetine (0.3ng/L to 300 ng/L) diminished algal clearance rates, 369 

growth and gonadosomatic index in California mussel M. californianus (Peters & Granek 2016). 370 

Pharmacological effects of fluoxetine and trait-based sensitivity have also been described for the marine 371 

worm Hediste diversicolor, based on increased serotonin levels in coelomic fluid and tissues. Effects 372 

included weight loss (up to 2% at 500 μg/L), decreased feeding rates (68% at 500 μg/L), and increased 373 

oxygen consumption and ammonia excretion (from 10 μg/L), but only limited influence on predator 374 

avoidance behaviors (Hird et al. 2016). Regarding sertraline, an early life-stage bioassay with sea urchin 375 

embryos found it to be highly toxic given the development of significant abnormalities at ng/L range 376 

concentrations (Ribeiro et al. 2015). 377 

As for invertebrates, information on toxicity of antidepressants to fish stem mainly from freshwater 378 

species. These include deleterious effects on physiology, reproduction, behavior (e.g. reproductive, 379 

predator avoidance, territorial and defensive behaviors) and the potential of SSRIs as endocrine disruption 380 

compounds in various fish species (e.g. Mennigen et al. 2010a, 2010b, Schultz et al. 2011, Weinberger & 381 

Klaper 2014). Only four studies have evaluated the effects of antidepressants on coastal and marine fish 382 

species. Two in vitro studies reported species specific responses when assessing the impact of multiple 383 

pharmaceuticals on various enzyme activities coastal and deep-sea fishes. In Solé and Sanchez-Hernandez 384 

(2015) fluoxetine had no effect on carboxylesterase (CbE). The latter is involved in drugs metabolism and 385 

activation in humans and has been associated with pesticide detoxification in fish (Wheelock et al. 2008). 386 

In Ribalta and Solé (2014), fluoxetine inhibited cytochrome P450, which are enzymes linked to phase I of 387 

xenobiotic metabolism as well as to metabolism of endogenous compounds (e.g. steroids). Moreover, high 388 



concentrations of fluoxetine, administered intraperitoneally to gulf toadfish Opsanus beta, affected 389 

branchial urea excretion and intestinal osmoregulation and resulted in a severe stress response with high 390 

levels of plasma cortisol (Morando et al. 2009). Additionally, fluoxetine (at 300 µg/L) has also been shown 391 

to affect marine fish behavior by reducing locomotor activity (EC25 2 µg/L) (Winder et al. 2012). 392 

Beta-adrenergic receptor antagonists or β-blockers are antihypertensive drugs, commonly used to 393 

treat high blood pressure, angina, arrhythmias and other cardiac conditions. The MOA of blockers such as 394 

propranolol, atenolol and metoprolol consists in their specific binding to adrenoreceptors, competing with 395 

β-adrenergic agonists, decreasing resting heart rate, cardiac output and cardiac muscles contractibility, 396 

among others (Bourne 1981). A comparative physiology review described the similarity in beta-adrenergic 397 

receptors between mammals and fish, highlighting the diversity of physiological processes mediated by 398 

these receptors, and proposed biomarkers for β-blockers exposure included cardiovascular dysfunction, 399 

with subsequent potential negative effects on fish growth and fecundity (Owen et al. 2007). Only recently 400 

have the effects of β-blockers been evaluated in marine fish. Both studies were in vitro 100 µM propranolol 401 

exposures and described decreased CbE and BFCOD activities in hepatocytes of coastal and deep-sea fishes 402 

(Solé & Sanchez-Hernandez 2015, Crespo & Solé 2016).  403 

Sublethal toxicology of propranolol on marine invertebrates include molecular, physiological and 404 

behavior changes. Motor activity of amphipod Gammarus sp has been shown to decrease even in the 405 

presence of predator cues, with respiration rate and feeding rate increasing with propranolol concentrations 406 

(100 µ/L to 5mg/L), probably to compensate for higher energy requirements (Wiklund et al. 2011). 407 

However, another study documented decreased feeding rate with associated oxidative damage and 408 

neurotoxicity in mussels (147 µg/L propranolol) (Solé et al. 2010). Exposure has also been linked with 409 

lower scope for growth, byssus strength and byssus abundance, potentially reducing substrate fixation 410 

ability in blue mussels, albeit at remarkably high propranolol concentrations (1 to 10 mg/L) (Ericson et al. 411 

2010). A series of complementary experiments with mussels M. galloprovincialis, evaluated the MOA, 412 

molecular targets and associated endpoints, as well as unspecific effects of exposure to pharmaceuticals 413 

interacting with the cAMP-dependent pathway. cAMP cell signaling influences various physiological 414 

functions of mussels, namely reproduction, metabolic regulation, and filtering efficiency (Fabbri & 415 

Capuzzo 2010). Overall, exposure to environmentally-relevant concentrations of propranolol revealed 416 

differences on cAMP-related endpoints, suggesting differential expression of molecular targets in digestive 417 

glands, mantle/gonads and gill tissues (Franzellitti et al. 2011). Furthermore, coexposure to fluoxetine and 418 

propranolol suggested adrenergic regulation in the digestive gland, whereas serotonergic prevailed in the 419 

mantle/gonads of exposed mussels (Franzellitti et al. 2013). A multibiomarker approach revealed altered 420 

lysosomal parameters in mussels exposed to low propranolol concentration (0.3 ng/L), but other oxidative 421 

stress responses were only observed in the combined fluoxetine and propranolol treatment (Franzellitti et 422 

al. 2015). Furthermore, transcriptional and functional regulation of genes (e.g. ABCB) and transporters 423 

(e.g. P-glycoprotein) related to the multixenobiotic resistance (MXR) system highlighted the potential of 424 

propranolol to impair immunotoxic response in mussels, thus potentially affecting the ability to extrude 425 

contaminants and cope with environmental stressors in general (Franzellitti & Fabbri 2013, Franzellitti et 426 

al. 2016). 427 



Anticonvulsants, also termed antiseizure or antiepileptics, are neuroactive drugs that interact with 428 

the central nervous system to treat epilepsy, bipolar disorder and are increasingly used as mood-stabilizers. 429 

Several compounds lead to decreased neuronal activity through different MOA. For example, 430 

benzodiazepines (such as diazepam or lorazepam) enhance γ-aminobutyric acid (GABA) neurotransmitter 431 

affinity for its receptor increasing chloride channel opening frequency, whilst carbamazepine acts via the 432 

blockage of sodium voltage-dependent channels of excitatory neurons inhibiting their sustained firing. Both 433 

result in lower cell excitation (Rang et al. 1999). A high degree of evolutionary conservation in GABA 434 

receptors (e.g. in fish) whose functions are related with reducing neuronal excitability and muscle tension 435 

has been reported (Carr & Chambers 2001). Even if carbamazepine's MOA is not fully understood, 436 

molecular targets appear to be conserved in mussels M. galloprovincialis following in vivo exposure, with 437 

reduction of the second messenger cyclic AMP and cAMP-dependent protein kinase (PKA), akin to 438 

responses in mammals (Martin-Diaz et al. 2009). Follow-up studies have described transcriptional and 439 

functional impairment of the MXR system in this species, highlighting the potential of carbamazepine, and 440 

others (i.e. fluoxetine and propranolol), in inducing immunotoxicological effects in marine bivalves at 441 

environmental relevant concentrations (Franzellitti et al. 2010, 2014, 2016). Other recent studies have 442 

focused on the effects of carbamazepine exposure on biomarker responses in several marine invertebrate 443 

species. Biomarkers of cellular health (e.g. lysosomal membrane stability, LMS), xenobiotic metabolism 444 

(e.g. EROD, GST), oxidative stress (e.g CAT, SOD, LPO), neurotoxicity (AChE) and genotoxicity (DNAd) 445 

have all been induced by varying exposure concentrations of carbamazepine in crab C. maenas (Aguirre-446 

Martínez et al. 2013a, 2013c), clams R. philippinarum (Aguirre-Martínez et al. 2013b, 2016, Almeida et al. 447 

2014) and Scrobicularia plana (Freitas et al. 2015), and in the polychaetes H. diversicolor (Pires et al. 448 

2016) and Diopatra neapolitana (Freitas et al. 2015). Toxicity of anticonvulsants in coastal and marine fish 449 

has seldom been reported. Reduced oxidative stress response, increased swimming lethargy and abnormal 450 

posture were observed in the euryhaline fish Gambusia holbokrii following acute diazepam exposure (in 451 

mg/L range) (Nunes et al. 2008), with acute toxicity LC50 estimated at 12.7 mg/L (Nunes et al. 2005). In 452 

vitro assays confirmed inhibitory action of carbamazepine on carboxylesterase and BFCOD activity in 453 

coastal and deep-sea fish species (Solé & Sanchez-Hernandez 2015, Crespo & Solé 2016). 454 

Lipid regulators or antilipidemic drugs include two major groups of lipid lowering agents: statins 455 

(e.g. simvastatin) and fibrates (e.g. bezafibrate, gemfibrozil). Their therapeutic role is to decrease the 456 

concentration of cholesterol and triglycerides (fibrates only) in blood plasma. Statins, such as simvastatin 457 

and atorvastatin, inhibit the activity of the enzyme HMG-CoA (3-hydroxymethylglutaryl coenzyme A 458 

reductase), which is responsible for feedback control of cholesterol synthesis. As a result of decreased 459 

intracellular cholesterol concentration, there is an over expression of LDL receptors in hepatocyte 460 

membranes which leads to resorption of circulating low-density lipoprotein cholesterol (LDL). Fibrates are 461 

peroxisomal proliferators whose MOA is not yet fully described. Their action is mediated through changes 462 

in the expression of the genes involved in lipoprotein metabolism. Fibrates bind to nuclear transcription 463 

factors of peroxisome proliferator activated receptors (PPARs), which then interacts with various cellular 464 

pathways determining hepatic lipid uptake and the metabolism of free fatty acids (Rang et al. 1999).  465 

Antilipidemic toxicity data in marine organisms is limited, nonetheless recent studies have 466 

reported a variety of effects on the development and reproduction of invertebrates, whereas in fish responses 467 



have been mainly assessed through molecular and biochemical changes. Chronic exposure to low levels of 468 

simvastatin (64 ng/L to 8 µg/L) in the marine amphipod G. locusta, ensued severe impacts on growth, 469 

gonad maturation and fecundity, the latter at relevant environmental concentrations (Neuparth et al. 2014). 470 

In sea urchin Paracentrotus lividus, Ribeiro et al. (2015) described delayed embryo development and 471 

increased percentage of embryo abnormalities when exposed to simvastatin (5 and 2 mg/L, respectively). 472 

Accordingly, another study considering a range of realistic environmental concentrations of simvastatin 473 

(0.16 and 1.6 µg/L), reported a decrease in development time and a concomitant increase in body length 474 

and growth rate of copepods Nitokra spinipes (Dahl et al. 2006). Regarding gemfibrozil, exposure induced 475 

vitellin-like proteins (ALP) at 1 mg/L in Mytilus spp., which authors argued reveals the potential for 476 

endocrine disruption by this fibrate (Schmidt et al. 2011). Concerning lipid regulators toxicity to fish, 477 

gemfibrozil exposure (150 µg/L) upregulated PPAR-related genes transcription in juvenile Sparus aurata, 478 

albeit no concomitant activation of PPAR pathways was observed (Teles et al. 2016). Activation of immune 479 

responses was also suggested following increased mRNA levels of genes linked with pro-inflammatory 480 

processes at 15 ug/L gemfibrozil. Increase in cortisol, as evidence of stress related effects from gemfibrozil 481 

exposure were also observed, even if only at a concentration of 1.5 mg/L (Teles et al. 2016). Gemfibrozil 482 

(injected at 1 mg/kg body weight in Solea senegalensis) also induced the activity of CYP-related and phase 483 

II (UDPGT) biotransformation enzymes, whilst inhibiting antioxidant defenses (Solé et al. 2014). 484 

Furthermore, simvastatin and fenofibrate have been shown to inhibit carboxylesterase activity in various 485 

coastal and deep-sea fishes (Solé & Sanchez-Hernandez 2015), with simvastatin exposure also decreasing 486 

AChE levels in estuarine Fundulus heteroclitus, (1.25 mg/L, and LC50 of 2.68 mg/L) (Key et al. 2009). 487 

Antibiotics are used in both human and veterinary medicine to treat bacterial infections, but may 488 

also be used as animal growth promoters. This group encompasses compounds derived from natural 489 

products (e.g. secondary metabolites of bacterial origin), semi-synthetic derivatives, or completely 490 

synthetic compounds which act through various mechanisms, such as suppression of bacterial cell wall or 491 

protein synthesis, and growth (Kummerer 2009a). Penicillins (e.g. penicillin and amoxicillin), macrolides 492 

(e.g. erythromycin), quinolones (e.g. ciprofloxacin) and tetracyclins (e.g. tetracycline) are amongst the most 493 

common types of antibiotics.  494 

As antibiotics are designed to target microorganisms, their toxicity on bacteria and microalgae is 495 

commonly 2 to 3 orders of magnitude above effect levels reported for higher trophic groups (Kummerer 496 

2009a). Accordingly, exposure to clarithromycin and clindamycin induced significant growth inhibition in 497 

the marine diatom Skeletonema marinoi at very low concentrations (EC50 of 156 and 154 ng/L, 498 

respectively) (Minguez et al. 2016). In contrast, Aguirre-Martínez et al. (2015) reported an EC50 of 400 499 

mg/L for inhibition of bacterial luminescence in Vibrio fischeri, after 15 min of exposure to the antibiotic 500 

novobiocin, and an IC50 of 72.8 mg/L for growth inhibition in the algae Isochysis galbana (96h exposure 501 

period). This study also reported effects concentrations (in the mg/L range) for other pharmaceuticals, yet 502 

novobiocin showed highest toxicity for microorganisms when compared with IC50 values determined for 503 

carbamazepine, ibuprofen and caffeine. Growth of marine microalgae (I. galbana and Tetraselmis chui) 504 

was inhibited by three different antibiotics not usually found in the environments (chloramphenicol, 505 

florfenicol, and thiamphenicol) with EC50 values ranging from 1.3 to 158 mg/L. Concerning other 506 



phototrophs, one study reported that sulfathiazole exposure, in concentrations commonly used in 507 

aquaculture (25 to 50 mg/L), induced growth inhibition on macroalgae Ulva lactuca (Leston et al. 2014). 508 

In marine bivalves, exposure to trimethophin (300 to 900 ng/L) and to amoxicillin (100 to 400 509 

µg/L) affected haemocyte parameters in both R. philippinarum and M. galloprovincialis (Matozzo et al. 510 

2015, Matozzo et al. 2016). Genotoxicity of amoxicillin was also confirmed via increased micronucleus 511 

frequency in both species’ haemolymph (Matozzo et al. 2016). Similarly, exposure to environmental 512 

concentrations of oxytetracycline resulted in decreased lysosomal membrane stability in mussels (Banni et 513 

al. 2015). Regarding crustaceans, Han et al. (2016), described several toxicity effects of trimethophin 514 

exposure (in the mg/L range) in copepod Tigriopus japonicas, including increased ROS levels, upregulation 515 

of antioxidant and xenobiotic detoxication-related genes, delayed development time and impaired 516 

reproduction. Antibiotic toxicity in marine fish, encompasses thus far, feeding behavior and biomarker 517 

responses in juveniles of the common goby Pomatoschistus microps exposed to cefalexin (from 1.3 to 10 518 

mg/L) (Fonte et al. 2016). At 20 ºC and over 4 days exposure, predation performance was significantly 519 

impaired (> 5 mg/L) and lipid peroxidation levels increased (at 10 mg/L). At 25 ºC cefalexin toxicity 520 

increased with a decrease of predation performance at 2.5 mg/L (Fonte et al. 2016).  521 

Antibiotics could also have relevant ecosystem level effects through changes to microbial 522 

communities and their functions (e.g. denitrification, organic matter decomposition), compromising 523 

ecosystem health (Kummerer 2009a, Caracciolo et al. 2015). Furthermore, constant environmental 524 

exposure could promote development of antibiotic resistance (Kummerer 2009b), which is a public health 525 

issue if resistance is transferred to human pathogens (Baran et al. 2011). 526 

Despite the limited number of studies, in comparison to freshwater systems, the information 527 

currently available on the ecotoxicity of pharmaceuticals to coastal and marine species can already be taken 528 

into consideration for management and regulation purposes. The examples highlighted in this chapter 529 

clearly demonstrate that multiple pharmaceutical compounds have adverse effects in coastal and marine 530 

organisms at environmentally relevant concentrations (e.g. Franzellitti et al. 2016, Minguez et al. 2016). 531 

However, current legislation is still mostly based on freshwater toxicity data, albeit the marine environment 532 

may be more sensitive to pharmaceutical residues than freshwater (Minguez et al. 2016 - based on a 533 

comparative toxicity analyses of 48 pharmaceuticals in both marine and freshwater microalgae and 534 

crustacean species). Ultimately, there are still multiple shortcomings in the evaluation of pharmaceutical 535 

contamination in coastal and marine environments that we should aim to resolve.  536 

 537 

4. Knowledge Gaps, Current Challenges and Futures perspectives  538 

 539 

There is still a lack of information regarding concentrations, fate and ecotoxicology of 540 

pharmaceuticals in coastal and marine environments (Brausch et al. 2012, Fabbri & Franzellitti 2016). 541 

Additionally, there is also a clear disparity of information among regions worldwide which we should 542 

tackle. For developing regions, where population increase, higher standards of living and improved access 543 



to pharmaceuticals will likely contribute to increase in environmental contamination this could be a key 544 

opportunity to start early monitoring schemes to evaluate environmental accumulation, and develop 545 

associated strategies to minimize detrimental impacts both from household use and commercial enterprise 546 

(e.g. aquaculture, industry). In developed countries, mitigation plans are necessary as the environmental 547 

pressure exerted by pharmaceuticals will continue to rise linked to population ageing and prevalence of 548 

chronic diseases. However, up to now most approaches are limited to spatial or temporal isolated data, 549 

lacking long-term aims, rather than encompassing large regional and temporal coverage. The latter is 550 

particularly important in coastal and transition systems, where variations in loadings are associated to 551 

natural fluctuations physical and chemical conditions (e.g. salinity, river flow, temperature, water 552 

chemistry) which may imply significant changes to the fate of pharmaceuticals in the environment 553 

(Glassmeyer et al. 2007, Zhao et al. 2015). 554 

In the long run, management strategies for contamination by pharmaceuticals should aim to act in 555 

advance of ensuing adverse effects, promote the development of a suit of best practices to reduce their 556 

occurrence in the environment, and drive the improvement of systems that constrain potential 557 

contamination sources, or increase the effectiveness of the removal and degradation of these compounds 558 

from the environment. The first line of action to reduce the potential entry of pharmaceuticals in the 559 

environmental are WWTP, with continued research on the behavior, degradation and varying removal 560 

efficiencies of different WWTP treatments for multiple therapeutic classes still required. Developing novel 561 

methodologies that enhance the efficacy of WWTPs tertiary treatment to specifically remove or degrade 562 

pharmaceutical compounds is an acknowledged path for reducing the potential impact of pharmaceuticals 563 

(Margot et al. 2013, Calisto et al. 2017). In fact, Directive 2013/39 EU (European Parliament, 2013) 564 

underlines the importance of finding new ways of tackling water pollution by pharmaceuticals, and 565 

unravelling the physico-chemical processes that determine degradation and transformation of 566 

pharmaceutical compounds, their metabolites and by-products will further contribute to resolving these 567 

issues. 568 

Different pharmaceuticals have been shown to bioaccumulate (Klosterhaus et al. 2013) and even 569 

biomagnify (Liu et al. 2017), yet in general there is insufficient information on bioaccumulation and 570 

impacts of pharmaceutical residues across the trophic web, namely for top-predators (Gaw et al. 2014). 571 

Likewise, given the effects of pharmaceuticals on bacteria and algae (Backhaus et al. 2011, Minguez et al. 572 

2016) and the high degree of homology between chloroplasts and bacteria as well as among other metabolic 573 

pathways across multiple phyla (Brain et al. 2008), the lack of research on higher marine phototrophs (e.g. 574 

halophytes, plants) is conspicuous. 575 

Compiling information on bioaccumulation, effects, and understanding MOA and adverse 576 

outcomes of pharmaceuticals are critical for effective management of pharmaceutical contamination and to 577 

safeguard coastal and marine biota. Thousands of different active pharmaceutical ingredients are available 578 

for human and veterinary use, which impedes assessing the full spectrum of contaminants in any given 579 

monitoring scheme. Furthermore, the consumed amount and toxicity of individual drugs varies greatly, thus 580 

it is key to prioritize research directives, monitoring and regulation. Several options have been forwarded 581 

over the years (e.g. Schreiber et al. 2011, Caldwell et al. 2014, Rudd et al. 2014), though three main aspects 582 



to take into consideration are generally consumption levels, ecotoxicological risk and persistence in the 583 

environment. Rather than in isolation, these facets should be evaluated simultaneously, as directing 584 

resources to higher risk but low use or persistence pharmaceuticals may not prove good investment of time 585 

and resources. Approaches based on MOA take into consideration the evolutionary and functional 586 

conservation of molecular targets of pharmaceuticals (e.g. receptors, enzymes), cellular and physiological 587 

processes across species, which enables the identification of relevant endpoints and experimental conditions 588 

to determine drug toxicity (Christen et al. 2010, Fabbri & Franzellitti 2016). Furthermore, chronic exposure 589 

assessments at environmentally significant concentrations are central to evaluate the risk posed by 590 

pharmaceutical substances (Fabbri & Franzellitti 2016). Acute testing has several limitations that can 591 

compromise resulting environmental regulation. Yet, contamination thresholds are still mostly based on 592 

acute standard toxicity tests. Even though, they are less sensitive than other endpoints in non-model species 593 

(e.g. Aguirre-Martínez et al. 2015), and neglect potential long-term effects from chronic exposures, which 594 

are more representative of the persistent contamination organisms experience in their natural environment 595 

(Crane et al. 2006, Fent et al. 2006). 596 

Ecotoxicological assessment should strive to fill the gap between sub-cellular endpoints and 597 

adverse individual or population level effects. This is a major challenge and requires the development of 598 

frameworks that synthesize data at many levels of biological organization. The adverse outcome pathways 599 

(AOP) is a good example of this, and several studies have illustrated the potential of AOP for population-600 

modelling and predictive ecotoxicology (Ankley et al. 2010, Franzellitti et al. 2014, Hird et al. 2016). 601 

Furthermore, the utility of the AOP approach has been demonstrated for cross species extrapolation and 602 

integrating life-history theory (Groh et al. 2015). One of the key issues is ensuring baseline toxicity studies 603 

produce robust and accurate quantitative data that can be subsequently integrated in population modelling 604 

approaches. Ideally dose-response or concentration-response relationships for both lethal and sub-lethal 605 

effects should be defined allowing response curves, effect-thresholds and the probability of effects 606 

occurring at different levels of biological organization to be estimated (Kramer et al. 2011).  607 

Ultimately, monitoring of prioritized pharmaceuticals, metabolites and by-products in coastal 608 

environments should complement risk assessment, and is integral to current European policy. The EU watch 609 

list for emerging contaminants under the Water Framework Directive (WFD – Directive 2000/60/EC) 610 

currently includes pharmaceutical Diclofenac, and two hormones 17-beta-estradiol (E2), and 17-alpha-611 

ethinylestradiol (EE2); with three additional antibiotics proposed for inclusion (Erythromycin, 612 

Clarithromycin and Azithromycin). In addition to consistent water collections and analysis, monitoring 613 

strategies can build upon the success of programs such as Mussel Watch (Goldberg & Bertine 2000), which 614 

would allow for both bioaccumulation (Wille et al. 2011, McEneff et al. 2014) and monitoring of effects 615 

and ecotoxicology a via standardized set of biomarkers (Franzellitti et al. 2015, Mezzelani et al. 2016a). 616 

Other prospective monitoring tools for baseline concentration data include the use of passive sampling 617 

devices (Martínez Bueno et al. 2016) or the use of unmanned automated sampling devices in ships and 618 

marine platforms of opportunity (Brumovsky et al. 2016). 619 
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Figure Legends 1054 

 1055 

Figure 1 – Major sources and pathways of pharmaceutical contamination into coastal and marine 1056 

environments. Also shown main fate and transformation processes that affect the presence and 1057 

concentration of pharmaceutical compounds. 1058 
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 1074 

Figure 2 – Tree map representation of studies on the effects of pharmaceutical exposure in coastal 1075 

and marine organisms per therapeutic class, biological endpoints and major taxonomic groups. Therapeutic 1076 

classes are antidepressants, analgesics and non-steroid anti-inflammatories (NSAIDs), anticonvulsants, 1077 

antibiotics, antihypertensives and lipid regulators. Biological endpoints and respective abbreviations are 1078 



molecular changes, accumulation (accumul), development (develop), mortality, reproduction (repro) and 1079 

behavior (behav). Major taxonomic groups and respective abbreviations are fish, tunicates (tun), 1080 

echinoderms (echi), mollusks (moll), crustaceans (crust), rotifers (rot), annelids (ann), nematods (nem), 1081 

cnidarians (cni), algae (alg), bacteria (bact). Individual box sizes are proportional to number of entries, and 1082 

total number of entries per therapeutic class is shown (n). Note that a single study may have multiple 1083 

entrances per therapeutic class (total number of studies 124). 1084 
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